Table game streamers exposed - fake money proof???

something like this:
Python:
import cv2
import numpy as np
from PIL import Image
import pytesseract

def detect_demo_watermark(frame):
    # Common demo mode indicators
    demo_templates = {
        'demo_text': cv2.imread('demo_template.png'),
        'practice_text': cv2.imread('practice_template.png'),
        'fun_play': cv2.imread('fun_play_template.png')
    }
   
    # Convert frame to grayscale for better matching
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
   
    # Areas where demo watermarks typically appear
    roi_zones = [
        (0, 0, frame.shape[1]//3, frame.shape[0]//4),  # Top left
        (frame.shape[1]*2//3, 0, frame.shape[1], frame.shape[0]//4),  # Top right
        (0, frame.shape[0]*3//4, frame.shape[1], frame.shape[0])  # Bottom
    ]
   
    # Check each ROI for demo indicators
    for x1, y1, x2, y2 in roi_zones:
        roi = gray[y1:y2, x1:x2]
       
        # Template matching
        for template in demo_templates.values():
            result = cv2.matchTemplate(roi, template, cv2.TM_CCOEFF_NORMED)
            if np.max(result) > 0.8:  # Threshold for match confidence
                return True
               
        # OCR check for demo text
        text = pytesseract.image_to_string(roi)
        if any(keyword in text.lower() for keyword in ['demo', 'practice', 'fun play']):
            return True
   
    return False

def analyze_stream(video_path):
    cap = cv2.VideoCapture(video_path)
    frame_count = 0
    demo_frames = 0
   
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
           
        if frame_count % 30 == 0:  # Check every 30 frames
            if detect_demo_watermark(frame):
                demo_frames += 1
               
        frame_count += 1
   
    cap.release()
    return demo_frames / frame_count  # Return percentage of frames with demo indicators

This script would:
  1. Load stream footage and process frame by frame
  2. Check specific regions where demo watermarks typically appear
  3. Use both template matching and OCR to detect demo indicators
  4. Track percentage of frames showing demo elements
  5. Could be expanded to include other detection methods
The actual implementation would need more refinement and error handling, but this gives a basic idea of the approach.
@5.o.2 if this works like it should we gonna have ACTUAL PROOF finally!!! 🥹
 
Back
Top